Overview — The Social
Media Data Processing Pipeline

David M. Brown, Adriana Soto-Corominas,
Juan Luis Suarez and Javier de la Rosa

This chapter provides a broad introduction to
the modelling, cleaning, and transformation
techniques that must be applied to social media
data before it can be imported into storage and
analysis software. While each of the above
topics in itself encompasses a wide range of
issues, they are also inextricably related in that
each relies in some way upon the others. In
order to discuss these processes as a group, we
employ the term data processing to describe
the preparatory phase between data collection
and data analysis. The sections that follow
demonstrate how data processing can be
broken down into a pipeline of three phases:

e In the first phase, modelling, the data is manu-
ally evaluated for structure and meaning by
identifying entities, their attributes, and how they
are related. This information is then mapped to a
data model, a schematic that will determine the
requirements for cleaning and transformation.
Also, the data model is often translated to a data-
base schema in order to prepare for data import
into a database management system.

* In the next phase, cleaning, the data is analyzed
for possible sources of inconsistencies that could
interfere with analysis. Inconsistent entries are
then either removed, or resolved using one of
a variety of statistical techniques. Furthermore,
improperly formatted fields can be managed
during the cleaning phase.

« Finally, in the transformation stage, the data is
read from a data source using either program-
matic techniques, or software designed for data
manipulation. It is then parsed in order to extract
and structure the information required by the
data model. Finally, the data is output in a format
that is compatible with the import system of the
chosen storage or analysis software.

Each of these phases will be presented as a
separate section that provides an overview of
relevant concepts, as well as examples that
put them into practice using state of the art
tools and techniques. Due to the typically
linked nature of social media data — think

“Twitter, Facebook, LinkedIn — this chapter

focuses on preparing data for social network

126 THE SAGE HANDBOOK OF SOCIAL MEDIA RESEARCH METHODS

style analysis, which seeks to understand
social structure and behavior by modelling
reality as a collection of nodes (things) con-
nected to one another through their interac-
tions, or relationships (McCulloh, Armstrong,
and Johnson, 2013). In the context of social
media, network analysis seeks to understand
how individuals interact within loosely con-
nected information networks through the
exchange of digital artifacts, such as
Facebook posts and tweets on Twitter (Rainie
and Wellman, 2012). All of the provided
examples are based on Twitter, and were
tested using a subset of the Paris Attacks
Twitter Dataset, which consists of approxi-
mately 40,000 tweets formatted as JSON
records collected by the CulturePlex
Laboratory in a twenty-four hour period fol-
lowing the terrorist attacks in Paris, France
on November 13, 2015. The subset was
selected to include only geolocated tweets,
which contain latitude/longitude information
that identifies the geographic origin of the
tweet (Sloan and Morgan, 2015).

SOCIAL MEDIA DATA MODELLING -
FROM DOMAIN TO DATABASE

Data modelling is a broad topic that encom-
passes a variety of techniques and concepts.
Generally speaking, data modelling attempts
to recognize and define the structure and
meaning contained within data in order to
create a model, which is often represented as
a schematic diagram. In essence, a data
model is a calculated abstraction of a real
world domain that is specifically designed to
meet certain storage and analysis needs
(Elmasri and Navathe, 2010; Robinson,
Webber, and Eifrem, 2015). It guides the rest
of the data processing procedures in that it
determines the structure of the required
output, and is typically mapped to a database
system, thus defining how data will be stored
and accessed. Traditionally, data is modelled
at three levels:

* The conceptual model, sometimes referred to as
a whiteboard model, describes the semantics of
the data set. It provides a conceptual map that
highlights the main entity types present in the
data and how they are related to one another.
This model will also be referred to as a domain
model, because its goal is to represent the
sphere of activity or knowledge associated with
the data.

* The logical model is based on the conceptual
model, but is created in anticipation of mapping
the model to a database system. This model
takes into account concepts such as access
paths in order to increase efficiency in data stor-
age, retrieval, and analysis; however, the logical
model is generally considered to be independent
of any particular technology.

* The physical model determines how data will
physically be stored on a computer relative to
the specifics of the database system being used.
This model takes into account internal storage
structures, such as data types, storage space
requirements, indexing, etc.

While each of these levels is important for a
complete discussion of data modelling, both
logical and physical modelling can become
very complex topics, especially when the
modelling process targets relational data-
bases. In light of this complexity, this chapter
focuses primarily on the property graph
model utilized by graph databases, which are
designed and optimized to work with highly
connected data. Furthermore, property graph
style modelling provides a great introduction
to data modelling because the physical and
logical models are often very similar to the
conceptual model. This allows the user to
model complex problems in a very ‘human’
way, eschewing complex procedures such as
de-/normalization. To demonstrate this, the
following subsections introduce conceptual
modelling, and illustrate how a simple model
of the “Twitterverse’ can easily be mapped to
a graph database management system using
the property graph model.

The Conceptual Model
The conceptual data model describes a data
set by identifying and mapping the main

OVERVIEW - THE SOCIAL MEDIA DATA PROCESSING PIPELINE 127

concepts of the domain associated with the
data. These concepts are often referred to as
entities, which represent general categories,
or types of data present within the domain of
the data set. In turn, entities are typically
associated with one another through one or
more types of relationships, which represent
interactions or associations between entities.
Furthermore, entities and relationships can
have attributes, which describe the character-
istics of entity and relationship classes. The
concept model is usually expressed as a
simple chart resembling a flow chart, or con-
cept map that highlights possible entities,
their attributes, and how they are related. The
conceptual model is typically the first step in
data modelling and database implementation,
and is crucial for high-level communication
of both architectural specifications and ana-
lytical procedures.

In order to create a conceptual model,
we first identify the entities present within
the data set. An entity can be defined as a
reference to ‘a thing in the real world with
an independent existence’ (Elmasri and
Navathe, 2010: 203). This thing could be
something tangible, like a building, person,
or automobile, or something intangible, like
a song, a scientific theory, or political party.
A good general rule when looking for entities
is that they are typically things named with
nouns. Using the example of Twitter, both
users and tweets could be identified as exam-
ples of entities within the data set. Each of
these entities would then be assigned attrib-
utes: users have attributes such as username
and location, tweets have time and text, etc.
After identifying the relevant entities within
the data set, the task becomes determining
how they are associated to one another by
relationships.

Relationships are generally not things,
but instead represent the type of associations
found between entities. We can define a rela-
tionship type as a ‘set of associations — or a
relationship set — among entities’ (Elmasri
and Navathe, 2010: 209). These associa-
tions define the semantics of the data model

in that they illustrate the logical connection
between entity types. As opposed to enti-
ties, relationships are usually identified using
verbs. Again looking at Twitter, an example
of a possible relationship would be rweets, as
in user tweets tweet. In this example, rweets
specifies a possible relationship between user
and tweet entities, but it is important to rec-
ognize that there can be more than one type
of relationship between two entity types. For
example, a user could also favorite a tweet,
thus creating a new possible relationship:
user favorites tweet.

Example: Modelling Activities

in Twitter

To further illustrate the idea and practice of
conceptual modelling, this example creates a
conceptual model using the Paris Attacks
Twitter dataset mentioned above. The pro-
cess of conceptual modelling often begins
with a simple description of the domain to
provide a contextual framework through
which data can be interpreted. The following
is a high-level description of the Twitter
domain that provides a starting point for the
conceptual modelling process.

e In the Twitter, users can follow, or be followed
by, other users.

e Tweet activity is driven by users. Users are
responsible for creating Tweets, the fundamental
unit of information exchange. Users have a vari-
ety of associated personal data, including their
username and other optional information, such
as language or geolocation.

e Tweets contain the text produced by users. They
have a variety of metadata associated with their
production, including location and time stamp.
Furthermore, they contain semantic information
that is relative to other tweets and users, such as
hashtags, user references, and retweets.

While the above description is admittedly a
simplified version of the activites associated
with Twitter, ignoring details like attached

-images and videos, favorites, and personal

messages, it is sufficient for our purpose in
that it provides the basis for understanding

128

the domain. From the above description we
can determine that the activity in Twitter is
driven by two primary entities: the tweer and
the user. Furthermore, each of these entities
will have certain characteristics of interest,
including tweet’s text, date, and location, as
well as the screen name associated with the
user that created it.

To begin the modelling process, we map
these two entities and their attributes to a
simple model drawn with the Dia drawing
program (Dia, 1998) (Figure 9.1).

Next, we must determine how they relate
to one another. In many ways, this can often
be the most challenging part of data model-
ling, as relationships are not always obvious.
Fortunately, Twitter generally has very con-
crete and well defined relationships based
on user interactions. A quick review of the
above summary reveals the following possi-
ble relationships:

® Users follow users. Each user has a list of associ-
ated users who they follow.

* Users tweet tweets. Each tweet can be directly
associated with the user who created it.

* Tweet references user. Optionally, a tweet can
contain a direct reference to another user.

* Tweet responds to tweet. Optionally, a tweet can
be a response to another tweet,

* Tweet retweets tweet. Optionally, a tweet can
encapsulate a previous tweet, making it a
retweet.

THE SAGE HANDBOOK OF SOCIAL MEDIA RESEARCH METHODS

Adding these relationships to our data model,
we begin to see a more complete image of
the Twitter domain that encompasses a wide
variety of the semantic possibilities repre-
sented (Figure 9.2).

However, before continuing it is important
to compare the domain model to the actual
dataset at hand to determine if there are any
missing elements, or perhaps spurious infor-
mation not included in the data set.

Looking through the fields of a JSON
formatted tweet provided by the Twitter
Application Programming Interface (API) —
a service that allows users to collect. up to
one percent of total tweet traffic in real time
based on filtering parameter — more on APIs
in Janetzkos’ chapter (this volume) — we see
that a wide variety of metadata about the
tweet is provided, including:

* Unique ids for both tweets and users

* Geolocation information for tweets when avail-
able
Timestamps for each tweet

* Alist of entities associated with each tweet

Looking more closely at the entity lists, we
see that Twitter’s data model considers
hashtags to be entities, not just part of the
tweet’s text. This raises the question of
whether or not our model should represent
hashtags as a unique entity type. While the
answer 1o this question depends entirely on

Tweet

+1d
+Text
+Created At
+Country
+City
+Coordinates

+Id

+Screen Name

Figure 9.1 Basic Twitter entities and their attributes

OVERVIEW - THE SOCIAL MEDIA DATA PROCESSING PIPELINE 129

" Hashtag
contains
replies to _-D +1d
— $ +Text
Tweet
+1d
+Text
—D +Created At tweets follows
+Country
+City
+Coordinates User
>
retweets references ™ | . ccreen Name

Figure 9.2 A simple conceptual model of the Twitterverse

analytic goals, it is easy to see how model-
ling hashtags as entities could be useful.
Hashtags serve as an easy way to group
tweets by thematic content without having to
perform complex natural language process-
ing (NLP) techniques such as topic model-
ling. Furthermore, they are user defined topic
keywords, and therefore benefit from human
judgment that is able to detect thematic
nuances often overlooked by computers. In
the case that they are not needed during
analysis, hashtag entities and their relation-
ships can simply be ignored.

Furthermore, we notice that there is no
data that relates to one user following, or
being followed by, another. As it turns out,
Twitter’s streaming API (Twitter Streaming
APIs, 2010) only produces metadata relat-
ing specifically to tweets. In order to receive
information about users, including follower
information, one must issue specific queries
to Twitter's REST APL

Therefore, the above conceptual model
must be modified to reflect the semantics
of the data at hand (Figure 9.3). While the
original Twitter domain model that includes
user follows user relationships is an accurate

representation of activities on Twitter, it does
not reflect the characteristics of the data-
set. Furthermore, while hashtags were not
considered in the original domain model,
their presence in the data set prompted their
inclusion in the data model. These sort of
modifications are quite common, and this
demonstrates the importance of perform-
ing multiple iterations during the modelling
process.

The Property Graph Model

After the domain and dataset have been ana-
lyzed and modelled, the resulting conceptual
model must be adapted to fit a database
system. This is typically accomplished
through an iterative process that incorporates
both the logical and physical models. In this
case, we will use the property graph model to
create a design suitable for a graph database
such as Neo4j (Neod4j, 2007) or Titan:db
(Titan Distributed Graph Database, 2015).
While a property graph model combines ele-
ments from both the logical and physical

‘model, at its core it is very similar to a con-

ceptual model in that it uses only three primi-
tives that can be easily mapped to the three

130 THE SAGE HANDBOOK OF SOCIAL MEDIA RESEARCH METHODS
Hashtag
contains 14
replies_to é D +Text
Tweet
+Id
+Text
tw
———{>l+Created At S follows
+Country
+City
+Coordinates User
g fe__|> +Id
retweets CIerRncns +Screen Name

Figure 9.3 The final conceptual model of the Twitterverse

primitives used by a conceptual model
(Robinson, Webber, and Eifrem, 2015):

* Properties are elements used to describe other
elements. They consist of a key-value pair in
which the key is a string, and the value can con-
tain complex data types. Properties correspond to
the conceptual model’s attributes,

* Nodes (vertices) are elements that contain prop-
erties. Nodes typically have a type, often referred
to as a label, which refers to a set of nodes that
share predetermined properties. Nodes corre-
spond to the conceptual model’s entities.

* Relationships represent associations between
nodes; they define the structure of the graph.
Relationships often have a type, or label, that
determines the semantics of a possible relation-
ship between two node types. In a property
graph, all relationships are directed in that
they have a start node and an end node, which
further specifies the semantics of the relation-
ship between two nodes. Relationships can also
contain properties. They correspond to the con-
ceptual model’s relationships.

In many cases, the conceptual model and
property graph are identical in everything
except the language used to describe them:
however, the requirements of the graph

database system in which the data will be
stored must be taken into account. While
schemaless databases like Neo4j do not
require any sort of model definition prior to
use, some graph database management sys-
tems, such as Titan:db, encourage the defini-
tion of a property graph style data model
(schema) that includes the specification of
the datatype of each property. Indeed, most
database systems that implement the prop-
erty graph model have some level of optional
model definition designed to improve the
performance or usability of the database. To
illustrate this, the following section demon-
strates flexible property graph style schema
definition and data modelling with the
SylvaDB (cite) graph database management
system.

Example: Mapping Our Case-study
of Twitter to a Property Graph
with SylvaDB

To illustrate the process of mapping a concep-
tual model to a property graph, this section
provides an example that utilizes SylvaDB’s
flexible schema creation tool to create a prop-
erty graph model. SylvaDB is open source

OVERVIEW - THE SOCIAL MEDIA DATA PROCESSING PIPELINE 131

software that is free to use, and provides a wide
variety of options for building queries, running
network statistics, and visualizing the data-
base. SylvaDB is unique in the sense that it
provides a browser-based graphical user inter-
face (GUT) that allows users to model, analyze,
and visualize data stored in a graph data-
base without writing code. While other database
management systems such as Linkurious
(Linkurious, 2013) provide GUIs for analysis
and visualization, and Titan:db provides a spe-
cialized domain specific programming lan-
guage for creating data models, no other
commonly available system provides all of
these capabilities in one software package.

To begin, simply go to www.sylvadb.com
and create a free account. From the dash-
board, click on the ‘New Graph® button and
give your graph a name. We will use the
name ‘Twitterverse’. You will be redirected
back to the dashboard, but you should now
see your graph listed on the left hand side of
the screen in the ‘Graphs’ column. Click on
your newly created graph, and you will see
a notification telling you that your schema
is empty. To remedy this, we will create a
new schema based on our property graph

model of the Twitterverse. Click on the
‘Schema’ button in the upper right hand cor-
ner of the screen. This will take you to the
schema builder interface, where you have
two options ‘Import Schema’ or ‘New Type’.
In SylvaDB, node’s label corresponds to a
type, and clicking on the ‘New Type’ button
will redirect you to a type creation form. As
you can see, SylvaDB provides you with sev-
eral default fields. Under the ‘“Type’ heading
there are ‘Name’ and ‘Description’ fields,
and under the ‘Properties’ heading, there are
‘Key’ and ‘Description’ fields. Starting with
the ‘Tweet’ entity, we can enter the name of
the type ‘Tweet’, and a short description. The
description is optional, but it can help other
users better understand your schema. In this
case we will simply enter ‘A user’s tweet as
provided by the Twitter API".

After type creation, we must create the
properties associated with this type. One of
the most important attributes associated with
a tweet is the date and time when it was pub-
lished. Therefore, we will add the ‘date’ as
the first property. To do this we simply type
‘date’ under the heading ‘Key in the proper-
ties list (Figure 9.4).

Type Properties
MName Key: Data 4 Rernove
Twost Dats. | Date. ‘I ﬂ
. T Use as label:
Description Description:
Koy: Description: Aernove
> J ﬂ
TUse as labei:
#* AGE ProperTy o Advances Mode
About U | Privecy Poscy | Terms of Senaoe
a2 com W @IYNADD B9 CumuroPianSyive
© 7018 SyhaDB AN ights resered -

Figure 9.4 SylvaDB's type creation form

132 THE SAGE HANDBOOK OF SOCIAL MEDIA RESEARCH METHODS

We have the option of entering a descrip-
tion for this property, but as date seems self-
explanatory, we will leave this field blank. If
we were to continue without doing anything
else, the database would expect to receive a
string, or a group of characters, in the date
field. However, in order to leverage more
advanced functionality for writing queries
and performing analysis — date comparisons,
advanced filtering, time series visualizations —
we can instead choose to store the date in a
specialized date format. To do so, we simply
click on the link that says ‘Advanced Mode’,
which expands the form field to provide a
dropdown select menu that includes a wide
variety of data types. Then, we simply select
‘date’, and SylvaDB will expect that all input
for this field will be properly formatted as a
date, and store it accordingly. We can con-
tinue this process, adding the other properties
included in the original data model. When

we have finished adding all of the attributes,
we can simply click on the ‘Save Type’ but-
ton and the entity type will be added to the
schema. In case we made an error or forgot a
property, we can always go back to the type
form and edit the information, even after there
is already data in the database.

After all of the entities described in the
data model have been entered as types in
the SylvaDB schema builder, you should see
something similar to Figure 9.5.

This means the schema is almost complete;
however, it is still missing one crucial step.
To finish the model, the user must define the
allowed relationships between the different
entities. Similar to defining a type, a relation-
ship is defined by filling out a form. To access
this form, a user can click the ‘New Allowed
Relationship® button on the schema page,
or the ‘new incoming’ or ‘outgoing allowed
relationship’ links that appear under the rypes.

Twitterverse » Schema

Hashtag

 Text
Nesw wormng or sulgoeng allowed relationship

Diagram

Tweet
1 Coordinstes
o Country
< Date [Data|
Id

5 Time [Time]
New ncormng o oulgoing aflowed relationship

User
Id

o Screen Name
Nevw incoming or putaing aliowsd retationship

New Trpe Hew allowed Retationship

About U | Prvacy Paliey | Tarms of Serves
2 irfoluivadt com @ Syl 8 CutturePlax. Syiva
© 2018 SyhuDB_ AJ rights reserved

Figure 9.5 SylvaDB's property graph schema creation interface

OVERVIEW - THE SOCIAL MEDIA DATA PROCESSING PIPELINE 133

Diagram

About Us | Privacy Podicy | Terma of Senvice
&3 infolraytvadt.com W @SyvaDB 18 CutturePles/Sylva
© 2018 SywaDEL Al rights reserved.

| Graph | | Datn < | Schema | Reports | Lm“mj-mm E.’

Figure 9.6 The Twitterverse conceptual model mapped to a property graph schema with

SylvaDB

We then simply select the source node type
using the drop down menu under the field
‘Source’, define the label of the relationship
in the ‘Name’ field, and select the ‘Target’
node type. For example, we can select the
source type ‘Tweet’, enter ‘retweets’ in the
‘Name’ field, and again select ‘Tweet’ as
the ‘Target’ field. Properties can be added to
relationships in the same manner that they are
added to nodes, using the simple form fields
to define keys and data types. This process
can be repeated for all of the possible rela-
tionships defined in the conceptual model.
After all relationships have been entered, we
will see something similar to Figure 9.6. Now
SylvaDB is ready to receive the Tweet data,
which can be imported in a variety of for-
mats including CSV and GEXF (a version of
XML designed specifically for graph data),
or entered manually.

CLEANING DATA - STANDARDIZING
APl DATA

After data has been modelled, but before it is
parsed and formatted for use with analysis
and storage software, it must be cleaned.
Cleaning requires that data be inspected to
determine if there are any inconsistencies, or
errors that will be problematic later during
analysis. There are many possible sources of
errors in data, which can occur at the instance
level, meaning that just one data entry is cor-
rupt, or at the system/schema level, which
can affect an entire data set (Rahm and Do,
2000). Typically, cleaning focuses more on
instance level errors, as schema redesign or
system modification are only possible

through post collection data transformations.

Due to the fact social media data is usually
aggregated and stored in validated database

134 THE SAGE HANDBOOK OF SOCIAL MEDIA RESEARCH METHODS

fields, it is less prone to instance-level errors
than hand-curated data; however, this is not
always the case, as it is common to analyze
fields that contain user generated text, which
is prone to instance level errors such as
typos, inconsistent spelling, etc. While spell-
ing and vocabulary issues can often be attrib-
uted to dialectal variation or cultural factors,
and in that sense do not qualify as dirty data,
they can be problematic during analysis.
Therefore, it is the task of the researcher to
consider the implications of this type of vari-
ation as it relates to their specific research
goals. Furthermore, instance level errors can
appear as anomalies in otherwise clean data-
sets when certain aspects of schema valida-
tion or record creation fail, resulting in
random, improperly formatted data.
Regardless of the source of error, cleaning is
fundamentally an ad hoc process that varies
based on the source and quality of the data.
Despite this, there are certain issues that
appear repeatedly when dealing with data.
The following sections outline some of these
common problems and their solutions.

Missing Data

Missing data is one of the most common
problems encountered when cleaning data.
Missing data can occur at the instance level,
or due to lack of (or overly permissive) vali-
dation within the social media application
database schema. There are a wide variety of
approaches to dealing with missing data that
all depend on the type of data and the
researcher’s goals. In many cases, data with
missing fields is simply deleted or ignored,
which is particularly effective with very large
datasets that contain few entries with missing
data. However, this technique can introduce
bias and affect the representativeness of the
sample, particularly if the discarded cases
differ systematically from the rest of the data
(Schafer, 1999). To avoid this, many statisti-
cians use a process called imputation, which
uses a variety of techniques to replace the
missing data. Imputation techniques often
employ advanced statistical procedures or

machine learning to replace missing values
and account for the imputation during analy-
sis. While these techniques go beyond the
scope of this chapter, there is a wide variety
of literature discussing imputation, as well as
other approaches to handle missing data
(Allison, 2001; Rubin, 2004; Schafer and
Graham, 2002).

Data Entry Errors

Simple content generation (data entry) errors
such as typos and inconsistent spelling are a
common problem in all types of data. This
sort of problem occurs almost exclusively at
the instance level due to individual user error.
Data entry errors can be very difficult to
identify, particularly in large datasets that are
impossible to inspect manually. They are
often discovered during the analysis phase,
and require the researcher to backtrack and
perform another iteration of processing to
reconcile the error. The most common
approach to dealing with this sort of error is
to use a process called fuzzy string matching
(Chaudhuri, Ganjam, Ganti, and Motwani,
2003). This technique involves calculating a
distance between two strings that indicates
the similarity of two entries. When multiple
entries are very similar, the researcher can
either manually inspect the entries to deter-
mine if they indeed refer to the same instance,
or determine a maximum difference that is
acceptable to programmatically resolve simi-
lar entries.

Duplicate Data

Duplicate records can occur in all kinds of
datasets. While they are most common at the
instance level in hand curated datasets, they
can also appear in social media data —
particularly data that has already undergone
parsing or transformation. For example,
when parsing tweet data, you may find that
the ids of retweeted tweets appear hundreds
or even thousands of times. While this case
can be dealt with during parsing, other cases
are not so straightforward. Duplicates can be
difficult to diagnose, as many duplicate

OVERVIEW - THE SOCIAL MEDIA DATA PROCESSING PIPELINE 135

entries are not recognized due to typos or
missing data. Therefore, the first step in
resolving duplicates often relates to the above
technique of cleaning up data entry errors.
After typos and spelling errors have been
resolved, previously unrecognized duplicates
are often visible within the dataset. However,
missing data and other errors can continue to
be problematic. After initial field cleaning,
there are a variety of procedures used to
compare the similarity of attributes across
data entries to identify possible duplicates.
Then, based on a minimum similarity meas-
ures determined by the researcher, highly
similar entries can be merged. Many dupli-
cate-removal techniques, also known as
deduplication techniques, are also based
upon advanced statistical procedures, fuzzy
string matching, and machine learning
(Gemmell, Rubinstein, and Chandra, 2011).

Inconsistent Units/Formats
Inconsistent use of units can also occur, espe-
cially in when combining data from a variety
of sources. It is oftentimes quite difficult to
identify this problem, as numeric values with-
out specified units do not provide many clues.
Resolving this sort of issue is highly depend-
ent on the nature of the data, and common
approaches are not easily delineated. For
example, a wide sample of climate data from
different countries may contain temperature
information in both Fahrenheit and Celsius.
In this case, the researcher could take into
account the geographic location where the
data was produced compared to the unit being
used or the range of possible temperatures.
This sort of error can also relate to formats, as
sometimes applications store metadata such
as datetimes — as specific data type that allows
date and time to be precisely represented —
using a format that is not compatible with
other software. Schema level formatting
problems are often addressed during the
transformation stage; however, here we view
it as part of the cleaning process because
improperly formatted data are often the source
of errors during data import and analysis.

These problems, whether created through
data entry errors, or due to lack of constraints
in the system responsible for aggregating
the data, represent a small subset of possible
sources of dirty data. In the end, it is the task
of the researcher to determine what types
of dirty data can affect their analysis based
on their own goals and needs, and apply the
appropriate solutions for the data at hand.
Therefore, moving forward in this chapter
the scope of this discussion will be narrowed
to address social media data, and even further
to address possible problems with generic
Twitter data.

Social Media Data - Is it Dirty?

Social media data is often quite clean because
it is typically produced, aggregated, and
stored in high quality infrastructure based on
well designed models. Indeed, social media
sites like Facebook and Twitter enjoy state-
of-the-art infrastructure, which translates to
high standards of data quality. These stand-
ards are reflected in the data produced by
their APIs, which tends to be perfectly for-
matted and complete; however, even com-
plete and consistent API data can suffer from
the above problems. For example, Twitter
does not require geolocation data, and there-
fore it is common that only a small portion of
API records contain coordinate data (Sloan
and Morgan, 2015) . Although in this case
non-geolocated tweets are allowed by
Twitter’s data model, and are therefore not
technically dirty data, during a geographic
analysis of tweets they could be considered
as such. Furthermore, sometimes social
media APIs produce ‘dud’ records: improp-
erly formatted, partial, or otherwise impos-
sible to parse; it is common to discover tweet
records that do not contain text or user infor-
mation, which can cause errors to be thrown
in the parsing process. Finally, user gener-
ated text is often the most important aspect of
social media data and is used for a variety of

‘analytic tasks, many of which employ natural

language processing techniques (Bifet and
Frank, 2010; Kireyev, Palen and Anderson,

136 THE SAGE HANDBOOK OF SOCIAL MEDIA RESEARCH METHODS

2009; Ronen, et al.,, 2014). Sometimes, in
order to perform these tasks, text fields must
be cleaned before they can be processed
effectively. To demonstrate this, the follow-
ing example employs the Twitter Paris
Attacks dataset to illustrate user generated
text cleaning in order to comply with later
analysis requirements.

Example: Producing a Clean

Tweet Field for Natural Language
Processing

To illustrate field level cleaning of social
media data, this example cleans the text con-
tained within the Paris Attack tweets in order
to produce a new field, clean text, that facili-
tates the application of natural language
processing tasks commonly used with Twitter
data such as language identification, topic
modelling, and sentiment analysis. To better
understand this process, as well as why it is
necessary, consider the text field of the fol-
lowing tweet:

RT @MailOnline: ‘General Curfew’
ordered by French government for first time
since WWII https://t.co/rk8MxzH7RT #Paris

As a human, it is relatively simple to deci-
pher the components of this tweet:

* The RT flag identifies that this is a retweet.

* The @ symbol shows the original user that
posted this tweet. Alternatively, this indicates a
reference to another user as a recipient of the
tweet's message.

* The # indicates a hashtag, which may or may not
be part of a phrase. In this case, the word Paris is
not included in the phrase.

* Finally, there is a link to another website, repre-
sented as a url.

After recognizing these components included
with the text of the tweet, one can easily see
that this tweet is written in English and that
its message refers to the current situation in
Paris. However, asking a computer to iden-
tify this is not as straightforward. Words
beginning with characters such as # @ are
not necessarily recognized as English, and
URLs seem to just be strings of arbitrary

characters. Furthermore, usernames are not
necessarily real words, nor are they necessar-
ily written in the same language as the rest of
the tweet. Therefore, this sort of extra con-
tent in the text field can confound an algo-
rithm designed to work with natural language.
In order to make it easier for the computer to
process tweet text, we can remove these
sources of confusion to facilitate more accu-
rate computer based text processing:

* The RT flag can be removed because it does not
affect the content of the tweet. Instead, it indi-
cates the endorsement of the content of a Tweet
and the implied interaction between twitter users
and content.

* The @ symbol, as well as the username can also
be removed due to the fact that they are typically
not directly related to the content of the tweet.
They are, in some cases, used conversationally as
proper nouns, and therefore may be included in
a clean text field depending on the goals of the
researcher.

* Dealing with hashtags can be a little trickier in
the sense that they can be part of a phrase, or
can be added to the tweet arbitrarily to indicate
the content of the tweet. Due to the fact that
they are generally real words and are often rel-
evant to the content of the tweet, we will simply
remove the #, while retaining the actual word
used for the hashtag.

* Finally, urls will be removed as they are not natu-
ral language as such, and in that sense are not
relevant to the language or sentiment associated
with the tweet,

The produced clean text field will be consid-
erably more readable for a computer. While
this process can never be perfect when per-
formed at a massive level, it will result in
much better results than processing the raw
tweet.

There are a variety of open source and
commodity software packages that can be
used to perform the above changes, includ-
ing the commonly used Microsoft Office
Excel and Libre Office Calculate, as well
more specialized tools such as OpenRefine
(OpenRefine, 2011). In this example, we will
use the OpenRefine, which provides a wide

OVERVIEW - THE SOCIAL MEDIA DATA PROCESSING PIPELINE 137

range of functionality for cleaning and trans-
forming large datasets. After downloading
and starting OpenRefine as specified by the
documentation for your operating system, we
can create a new project simply by selecting
the file containing the tweet data. OpenRefine
will then request that we configure parsing
options, and we can simply select the field
that we are interested in working with: ‘text’.
OpenRefine then converts the field into what
looks like a spreadsheet column, and we can
continue by clicking ‘Create Project’ in the
upper right hand portion of the browser. We
can then create a custom text facet — the con-
struct used by OpenRefine to perform opera-
tions on columns of text — for the column
by clicking “Text’ > *Facet’ > ‘Custom Text
Facet’ (Figure 9.7).

OpenRefine allows the user to write cus-
tom facets using a proprietary scripting lan-
cuage, General Refine Expression Language
(GREL), Jython, or Clojure. In this example,
we will use GREL, but any of these languages
would work equally well. To clean this field,
we will use a series of replace methods,
which allow the user to search for substrings

using regular expressions and replace them as
needed. For more information about regular
expressions, please refer to the OpenRefine
documentation. To remove the unwanted ele-
ments from the tweets, we can use a series of
four chained replace methods:

1 The first method, replace("#", ""), searches the
the string for the “#" character. In the case that
it finds this character, it is replaced with ““*', an
empty string, thereby removing it.

2 The second method, replace(/RT\s/, ""), looks for
the characters “RT”, followed by a mandatory
space (designated by the symbol “\s”). In the
case that it finds this sequence of characters, they
are replaced by """, an empty string.

3 The third method, replace(/http\S*/, " "), looks for
the sequence “http”, followed by any non-space
character, designated by “\S". Furthermore, the
non-space characters can be repeated, desig-
nated by the “*". This specifies that any string
beginning with “http” followed by any charac-
ters up until a space should be replaced with "™,
an empty string.

4 Finally, using a similar regular expression to
the one used in step 3, the fourth replace
looks for any string starting with “@", again
followed by any sequence of non-space

un

Custom Facet on column text

Exprossion

wvalue.replace(*#", *").replace(/AT\s/, ==, replace(/hLTp\5*/,
=*).replace(/@\5*/, =)

it 53 what happened on Parls

Thi Efel Tower Goes Dk After Pars Aliscks Very, very sad
v from Paris. Tha post Tha EfMel Tower Coes.

Ot Pasarrts s proyers o oul i the victims n Pars PetsAlecs

Figure 9.7 OpenRefine's custom facet creation tool

138 THE SAGE HANDBOOK OF SOCIAL MEDIA RESEARCH METHODS

characters. If found, this string is replaced with
an empty string.

Chaining together the four replace methods
with the appropriate regular expressions
results in the following expression:

value.replace("#", "").replace(/RT\s/, "").replace(/
http\S*/, " ").replace(/@\S*/, "")

The unwanted characters have been removed
from the tweet text and can be exported in
one of many formats and used however
necessary.

DATA TRANSFORMATION

After the dataset is modelled and cleaned, it
is ready for the final stage of data processing:
transformation. While the term data transfor-
mation can encompass a wide range of pro-
cedures, in the context of this chapter it refers
to receiving input data and formatting it in a
way that complies with a data model and can
be imported into storage and analysis soft-
ware. Essentially, the process consists of
taking an input, often stored as formatted
plain text, parsing the input by extracting the
relevant information, and outputting the
information in a specified format by writing
to files or a database management system.
There is a wide variety of software that can
be used for this kind of task, ranging from
browser based tools like OpenRefine to
Python libraries such as Numpy (2006) and
Pandas (2008) that feature powerful
abstractions — arrays, matrices, hashmaps —
for manipulating data.

The Transformation Pipeline:
Techniques and Considerations
There are many approaches to creating this
kind of processing pipeline that depend on
the computing power available for process-
ing, size of the dataset, and the required
output; however, the transformation pipeline
can be broken down into the three phases

mentioned above: reading input data, parsing
and transformation, and writing to an output.
While each of these steps require ad hoc pro-
cedures, again there are general concerns that
are relevant for all data sets. Here we broadly
outline these concerns as well as potential
approaches to a variety of situations.

Reading the Data: Sources and
Approaches

To begin the processing pipeline, one must
first consider the source and initial format of
the dataset. Broadly, there are three
possibilities:

* The data has not yet been acquired and it will
be read directly from an API. This means that
the data is still being stored by the social media
application in which it was created. Typically,
this kind of data is accessed programmatically
and either written to an intermediate format like
text files, or read dynamically from the APl and
processed ‘on the fly'. This means that it will not
be stored in any intermediate format and will be
parsed, transformed, and written to output as it
is produced by the API.

* The data has already been harvested from the
API and is stored in flat text files. Most com-
monly, this data will be stored in JSON or CSV
format, which can be read, parsed, and output
using a wide variety of software, including all
major programming languages.

* The data has already been harvested from the
API, but was loaded into a database manage-
ment system. Similar to data coming directly
from a social media application AP, relevant
data will need to be read from the database and
either processed on the fly, or stored in an inter-
mediate format such as a flat text file.

Depending on the source of the data, the first
step in the transformation pipeline will be
accomplished in one of a variety of fashions.
The following sections address possible solu-
tions for reading input data; however, it is
important to recognize that there is generally
not one right way to accomplish this task.
Instead, there are numerous valid approaches
to this procedure that depend on the prefer-
ence of the researcher.

OVERVIEW - THE SOCIAL MEDIA DATA PROCESSING PIPELINE 139

Reading Data from an API

Typically, data is harvested from an API
using one of many programmatic techniques.
Each API will feature a specific architecture
and protocol that provide a means Lo access
the data it contains. Most commonly, social
media site APIs use REST, an architectural
style that typically uses the HTTP protocol
(Massé, 2011). This is convenient because it
provides a standard way to access data;
although each social media site will have a
unique way of providing the application data,
the means for accessing is similar to other
sites that use REST. This makes it easy for
users to access data without having to learn
specialized protocols, or use overly special-
ized tools.

REST resources are typically accessed
using programmatic techniques. Popular
programming languages like Python or Java
provide a wide variety of built-in or third
party software designed to facilitate the use
of HTTP for accessing services like REST
APIs. Generally, a researcher will write a
small program specifically tailored to the tar-
get API that has been designed to harvest the
data of interest. This program will then either
pass the data to another program to finish the
processing pipeline, or write the data to an
intermediate format like flat text files. Even
though writing data to an intermediate format
adds an extra step to the processing pipeline,
it is common to separate data collection from
data processing. Furthermore, performing
collection separately minimizes the moving
parts involved with the pipeline; if there is a
problem during the parsing or output phase, it
will not affect data collection, thereby simpli-
fying the process by compartmentalizing it.

Reading Data from Text Files

Reading data from text files is often consid-
erably simpler than reading from an APL In
many cases, it is as easy as choosing an
application that is able to read the text file

format. For example, there are a wide variety
of desktop/browser applications that read
files stored in CSV format, like Microsoft
Excel, SPSS statistical software, and
OpenRefine. However, depending on the
operation that will be performed upon the
data, these programs can be limited due to
their lack of flexibility — they only provide
specific hard coded procedures. Some soft-
ware, such as OpenRefine, provide a balance
in that they have a point and click user inter-
face, but they also support limited scripting
operations that allow the user to implement
custom functionality.

In the case that the researcher needs com-
plete flexibility (or they are comfortable with
computer programming), flat text files can
also be read programmatically using a wide
variety of freely available programming lan-
guages. In this case, files are read and refer-
enced by variables. Then the researcher can
implement any procedure, or manipulation of
the data without being limited by out-of-the-
box functionality. The examples presented
later in this chapter demonstrate this using
the Python programming language to read
and manipulate flat files.

Reading Data from a Database

In many ways, reading data from a database
is similar to reading data from a web APIL:
usually programmatic techniques are
employed and relevant data is often trans-
ferred to flat files as an intermediate step
before parsing and transforming the data.
However, unlike a REST API, databases do
not necessarily have similar architectural
styles or protocols for data access. For exam-
ple, some databases provide REST endpoints
similar to an internet application API, others
use websockets for duplex style communica-
tion between the database server and client
program, and many use specialized TCP

“based protocols. Despite this inconsistency,

most major programming languages have
third party libraries that can be used to access

140 THE SAGE HANDBOOK OF SOCIAL MEDIA RESEARCH METHODS

popular databases without delving into the
specifics of the database communication pro-
tocol. In this case, the researcher must choose
an appropriate library from their favorite
programming language, familiarize them-
selves with the library, and write a normally
small program to access the desired data.

Beside this type of client-server commu-
nication, many databases provide a com-
mand line interface (CLI) that allows the user
to manipulate and retrieve data. Typically,
a database will employ a domain specific
language (DSL), or small programming
language that has been custom designed to
perform only the operations possible with a
particular database. Fortunately, many data-
bases share a DSL that allows a user famil-
lar with the DSL to use a variety of database
software. For example, structured query lan-
guage (SQL) is a DSL used by most relational
databases such as MySQL, PostgreSQL, and
Oracle RDBMS (Date and Darwen, 1997).

Finally, some database management sys-
tems provide a graphical interface that allows
users to access data without doing any pro-
gramming. While this scenario is less com-
mon, it is important in that it provides a way
for researchers without the time or means to
learn computer programing access to power-
ful data manipulation techniques. SylvaDB,
seen In a previous example, is a good rep-
resentative of this kind of system. Other
examples of GUI based database manage-
ment systems include commonly known
tools such as Microsoft Access and MySQL
workbench.

Practical Considerations: Size

of Data Set vs. Computational
Resources

Regardless of where the input data is stored,
before determining how data will be parsed it
is important to consider the size of the data-
set and how this will affect the parsing pro-
cess. Fundamentally, there are two scenarios:
1) the dataset is small and can fit in a com-
puter’s memory (RAM); 2) the dataset is too
large and cannot be loaded into memory in

its entirety. Of course, whether a dataset is
considered to be large depends directly on
the computational resources available for
processing. Therefore, it is important to
understand both the size of the dataset and
the amount of RAM available for processing,
as well as how much extra RAM will be
required for running any necessary software,
or performing transformations in memory.
The latter is especially important, as it is
tempting to think that 4 gigabytes of data can
be processed with 4 gigabytes of RAM. In
reality, this is not the case, because many
operations require copying data, at least tem-
porarily, hence requiring more memory. That
said, in the case that the data is too big to
load into memory there are still many options
that allow the researcher to handle big data-
sets with relatively limited computational
resources.

Approaching this problem programmati-
cally, it is common for data to be parsed
on the fly. Most programming languages
allow files to be opened without loading
their entire contents into memory. Then, the
file can be read line by line, only loading a
minimal chunk of data into memory, which
is parsed and written to some sort of output.
Furthermore, there are data processing tools,
such as OpenRefine, that use internal pro-
grammatic constructs to be memory efficient.
This allows the user to perform complex
operations on large data sets with a relatively
small amount of RAM without writing code.
However, while on the fly programmatic
parsing can be performed on enormous data-
sets and is only limited by hard disk space
and time, most browser based or GUI style
software has either fixed or practical limits.
For example, OpenRefine has no fixed lim-
its, but begins to suffer performance losses
on CSV files containing more than 100,000
rows of data, both due to the time complexity
of the algorithms it employs and RAM limi-
tation of typical computers. Therefore, larger
datasets are typically dealt with program-
matically using a scripting language such as
Python.

OVERVIEW - THE SOCIAL MEDIA DATA PROCESSING PIPELINE 141

Parsing

Regardless of the size of the dataset, social
media data generally requires some degree of
parsing and transformation before it can be
stored and analyzed. Parsing involves divid-
ing the data into manageable or semantically
cohesive chunks, extracting relevant infor-
mation, and outputting it in a specific format.
In general, parsing techniques are tightly
coupled to the format and semantics of the
data. Due to the extremely ad hoc nature of
parsing, it is more effective to present an
example of the parsing process instead of
simply describing it. The following section
provides a concrete example of how data 1s
parsed using the Paris Attacks Dataset and
the Python programming language.

Example: Parsing a List of Tweets
with Python

Parsing a list of tweets is a process that can
be accomplished using any major program-
ming language (R, Java, Perl, etc.). This
example employs one of the most versatile
and widespread open source programming
languages: Python. To begin, we identify that
the input data is stored as a list of JSON seri-
alized tweets in flat text files. Furthermore,
we assume that the computer used has plenty
of RAM to store the contents of the dataset in
memory; however, in this example we do not
load the whole dataset. Instead, we parse the
tweets on the fly, storing relevant information
in data structures that will later be written to
files using the TSV format. TSV, like CSV, is
similar to an Excel spreadsheet in that it
stores data in tabular format with rows and
columns. However, instead of using commas
like a CSV, it separates entries within a row
using the tab character, which is more space
efficient and tends to import more smoothly
into certain data management systems. The
target output of this process is four TSV files:

1 The first file will be a list of users and related
metadata. This list can be thought of as a list of
user nodes that will be mapped to a property
graph model and stored in a graph database.

2 The second file will be a list of tweets and related
metadata. This list represents tweet nodes that
comprise the second node type of the property
graph model, which will also be stored in a graph
database.

3 The third file will be a list of hashtags. This is the
third node type in the property graph model, repre-
senting the final node type in the graph database.

4 The fourth file will be an edge list containing
edges of four types: user tweets tweet, tweet
retweets tweet, tweet replies to tweet, and tweet
contains hashtag. This list represents the relation-
ships included in the property graph model, and
will be used to structure the information stored
in the graph database.

Using Python, we can create these four files
using the built in csv module. Furthermore,
we will load the json module, which will be
used later to parse the JSON formatted tweets.

import csv

import json

tweetfile = open(“tweets.tsv”, “wb")
tweet_writer = csv.writer(tweetfile, delimiter="\t")
userfile = open(”users.tsv"”, “wb")

user_writer = csv.writer(userfile, delimiter="\t")
hashtagfile = open(”hashtag.tsv”, “wb")

hashtag_writer = csv.writer(hashtagfile,
delimiter="\t")

edgefile = open(”edges.tsv”, “wb")
edge_writer = csv.writer(edgefile, delimiter="\t")

Using the csv module writer object, we can
write data to csv files. To begin this process,
we can create headers for each file. These
headers specify the contents of each column
in the TSV files that have been created.

tweet_header = ["tid", "lang", "text", "created_
at", "country", “city", "coordinates”]

tweet_writer.writerow(tweet_header)
user_header = ["uid", "screen_name"]
user_writer.writerow(user_header)
hashtag_header = ["hid", "text"]
hashtag_writer.writerow(hashtag_header)
edge_header = ["source_id", “target_id", "type"]
edge_writer.writerow(edge_header)

142 THE SAGE HANDBOOK OF SOCIAL MEDIA RESEARCH METHODS

These headers can serve as a guide during
the parsing process, as they determine what
data needs to be extracted from the tweet.
Notice that the edge header also includes the
column header ‘type’, which will allow us
to distinguish between different relationship
types. After inspecting the contents of a tweet
record, we also notice that there are possibly
two tweets contained within each record: if
the tweet is a retweet, it also includes the
metadata of the original tweet. In order to
avoid code duplication, we will write a sim-
ple function that extracts data from the origi-
nal tweet record that can also be used on the
embedded retweet record.

def parse_tweet(tweet):

tweet = json.loads(tweet)

tid = tweet["id"]

lang = tweet["lang"|

text = tweet|"text"]

created_at = tweet[" created_at*]
place = tweet.get(“place*, {})
country = place.get("country*, **)
city = place.get("full_name*, **)

coordinates = place.get(*bounding_box*, {})
get("coordinates*®, **)

user_mentions = tweet.get("entities*, {J).
get("user_mentions", [])

hashtags = tweet.get("entities*, {})
get(“hashtags”, [))

uid = tweet["user*]["id"]

screen_name = tweet| " user”)["screen_name*|]
replies_to = tweet["in_reply_to_status_id"]
retweeted_status = tweet.get("retweeted_
status”®, **)

return (

tid, lang, text, created_at, place, country, city,
coordinates, user_mentions,

hashtags, uid, screen_name, replies_to,
retweeted_status)

We will then open the tweet file, iterate over
all of the tweets in the file, call this function
on each tweet, and store the results as a row
in a Python dictionary containing all of the
tweet data. If the tweet was a retweet, we will
store the retweet data in the same dictionary.

User and hashtag data are stored in separate
dictionaries, as they will be written to a differ-
ent output file. Finally, any edges (user tweets,

user mentions, in reply to, retweets, contains)
will be written directly to the edge file.

tweet_dict = {}

user_dict = {}

hashtag_dict = {}

hashtag_id = 0

with open("paris_tweets.json", "rb*) as f:

for tweet in f:

results = parse_tweet(tweet)

basic tweet data

tid = results[0]

if tid not in tweet_dict:

row = [results[1], results[2], results[3], results[4),
results[S), results[6], results(7])

tweet_dict(tid] = row

user_id = results[10]

if user_id not in user_dict:

user_dictfuser_id] = rt_results[11]
edge_writer.writerow([user_id, tid, *TWEETS"])
user mention data

user_mentions = results(B]

for user_mention in user_mentions:

uid = user_mention|*id*)

screen_name = user_mention| " screen_name*)
if uid not in user_dict:

user_dict{uid] = screen_name
edge_writer.writerow([tid, uid, *MENTIONS"])
hashtag data

for hashtag in results(9):

hashtag = hashtag|"text "].lower()

if hashtag not in hashtag_dict:

hid = *h{}* format(hashtag_id)
hashtag_dict[hashtag] = hid
edgewriter.writerow([tid, hid, *CONTAINS*])
hashtag_ld += 1

replies to data

replies_to = results{12]

if replies_to: _
edge_writer writerow([tid, replies_to, *REPUES_TO"])
if replies_to not in tweet_dict:
Mmm_tol = [- n' n-. --' --' .I' .-' .-]

OVERVIEW - THE SOCIAL MEDIA DATA PROCESSING PIPELINE 143

retweet data

if results[-1]

rt_results = parse_tweet(results{-1])
rt_tid = rt_results{0]

if rt_tid not in tweet_dict:

rt_row = [rt_results[1], rt_results[2], rt_results[3],
rt_results(4),

rt_results(S), rt_results[6], rt_results(7]]
tweet_dict{rt_tid] = rt_row

user_id = rt_results(10]

if user_id not in user_dict
user_dictjuser_id] = rt_results[11]

edge_writerwriterow([results[0], rt_tid,
*RETWEETS"))

edge_writerwriterow([user_id, rt_tid, “*TWEETS"))

Finally, we write the contents of the tweet,
user, and hashtag dictionaries to TSV files,
and then close the original input files.

for k, v in tweet_dict.items():
row = [kl +v
tweet_writer.writerow(row)
for k, v in user_dict.items():
user_writerwriterow([k, v])
for k, v in hashtag._ dict.items():
hashtag_writer writerow(ly, k])
tweetfile close()

userfile close()
hashtagfule.cloée()
edgefile.close()

Now the list of tweets has been parsed into
three separate TSV files that will be easy to
load into most graph database systems and
analysis software. To quickly demonstrate
this, the next example loads the produced
files into the Neo4| graph database using the
Neod4j bulk loader CLI (Neodj-import,
2015).

Bulk Loading TSV Files into Neo4j

Provided that data has already been format-
ted as a series of node lists and edge lists, we
can use the Neo4j bulk import tool. However,
there are certain changes that must be made
to the TSV files produced in the previous

example in order to prepare the data for
import. Thankfully, only the headers need to
be changed; can be done using the Python
Pandas package. We will read the files one by
one and reassign certain column header
names so they comply with Neodj's specifi-
cations. Specifically, all nodes require a
unique id column denoted by the: ID postfix
as well as a column for label, denoted as:
LABEL. Edges require a column with:
START_ID, which is the source of the rela-
tionship,: END_ID, which is the target of the
relationship, as well as: TYPE.

import pandas as pd
tweets = pd.read_csv("tweets.tsv", sep="\t")

tweets.columns = ["tid:ID", "lang", "text",
"created_at", "country”, "city", "coordinates”]

tweets[":LABEL"] = "tweet"
tweets.to_csv("neod|_tweets.tsv", sep="\t")
users = pd.read_csv("users.tsv", sep="\t")
users.columns = ["uid:ID", "screen_name"]
users[":LABEL") = "user"
tweets.to_csv("neod|_users.csv”, sep="\t")
hashtags = pd.read_csv(" hashtags.tsv", sep="\t")
hashtags.columns = ["hid:ID", "text"]
hashtags[":LABEL"] = "hashtag"
hashtags.to_csv("neodj_hashtags.tsv”, sep="\t")
edges = pd.read_csv("edges.csv”, sep="\t")
edges.columns =[":START_ID", “:END_ID", ":TYPE"]
edges.to_csv("neodj_edges", sep="\t")

After preparing the data set, one must install
and unpack Neo4j, navigate to the root direc-
tory (something like neodj-community-
2.3.1/), and use the command line import
tool to load the data. With the command line
tool, we have to specify the destination direc-
tory where the data will be stored (by default/
data/graph.db), each node list that will be
imported, the edge list that will be imported,
and the delimiter used for the files.

Join/neodj-import —into/neodj-community-2.3.1/
data/graph.db -nodes neo4j_users.tsv —nodes
neo4j_tweets.tsv —nodes neo4j_hashtags.tsv -
relationships neodj_edges.tsv —multiline-
fields=true —delimiter TAB

T THE SAGE HANDBOOK OF SOCIAL MEDIA RESEARCH METHODS

This command can be broken down as
follows:

e The main command, “./bin/neodj-import”, runs
the import executable included in the Neodj
database distribution.

e The -into argument specifies the destination
directory for the processed output. This is where
the data is stored and accessed by Neodj.
With Neodj's default configuration, this directory
should be "data/graph.db”.

* The -nodes arguments are used to specify the
names of the files that contain the data that will
be imported to create nodes.

¢ The ~relationships arguments are used to specify
the names of the files that contain the data that
will be imported to created relationships.

¢ The -multiline-field argument determines whether
or not the input fields can contain newline charac-
ters ("\n"). Since tweet text can contain newlines,
if this argument is not specified as true, the import
will throw errors.

¢ Finally, the -delimiter argument specifies the
character used to separate the entries in the
input files. This argument value defaults to a
comma, but because we are using TSV files, we
indicate that this value should be a tab "\t*.

After running this command and waiting for
the data to be imported, we can start the
Neodj server, and begin writing queries using
Neod)'s expressive graph query language:
Cypher (Cypher Query Language, 2012).

CONCLUSION

As we have seen, processing social media
data requires a wide variety of techniques
and a broad range of skills. Fortunately, there
are a wide range of tools, both programmatic
and GUI based, that are specifically designed
to work with this kind of data. As social
media becomes even more prevalent, the
number of individuals seeking to leverage the
wealth of data provided by users will surely
grow. As more and more researchers - in
both academia and industry - dedicate them-
selves to studying this data and producing

actionable information, the range and quality
of techniques and tooling will increase.
While no individual can be expected to
master all of the software dedicated to this
sort of data processing, this chapter demon-
strates that despite the typically one-off
nature of data processing, there are certain
commonalities that span the range of possi-
ble data sets. Regardless of how big or small
a dataset may be, whether it be rife with
errors, or sparkling clean, to achieve satisfac-
tory results all data must be modelled,
assessed for cleanliness and field formatting,
and parsed into a format that is compatible
with target storage and analysis software. We
hope that after reading this chapter you will
feel more comfortable taking charge of your
data to produce the best results possible.

REFERENCES

Allison, Paul D. (2001). Missing Data (Vol. 136).
Thousand Oaks, CA: Sage.

Bifet, Albert and Frank, Eibe. (2010). ‘Senti-
ment knowledge discovery in twitter stream-
ing data’, Discovery Science: 1-15. Berlin:
Springer.

Chaudhuri, Surajit, Ganjam, Kris, Ganti, Ven-
katesh and Motwani, Rajeev. (2003). "Robust
and efficient fuzzy match for online data
cleaning’, Proceedings of the 2003 ACM
SIGMOD International Conference on Man-
agement of Data, 313-324.

Cypher Query Language. (2012). Retrieved
from http.//neod.com/docs/stable/cypher-
query-lang. html

Date, Chnis J. and Darwen, Hugh. (1997). A
Guide To 5ql Standard (Vol. 3). Reading:
Addison-Wesley.

Dia [computer software]. (1998). Retrieved from
https //sourceforge. net/projects/dia-installer/
Elmasri, Ramez and Navathe, Shamkant.
(2010). Fundamentals of Database Systems
(6th ed.). Boston: Addison-Wesley Publishing
Company. '

Kireyev, Kirill, Palen, Leysia and Anderson, Ken-
neth. (2009). ‘Applications of topics models to
analysis of disaster-related twitter data’, NIPS

OVERVIEW - THE SOCIAL MEDIA DATA PROCESSING PIPELINE 145

Workshop on Applications for Topic Models:
Text and Beyond (Vol. 1). Canada: Whistler.
Gemmell, Jim, Rubinstein, Benjamin, and
Chandra, Ashok. (2011). Improving entity
resolution with global constraints. arXiv pre-

print arXiv:1108.6016.

Linkurious [Computer software].
Retrieved from http:/linkurio.us/
Massé, Mark. (2011). REST AP/ design rule-
book. Sebastopol, CA: O'Reilly Media, Inc.
McCulloh, lan, Armstrong, Helen, and John-
son, Anthony. (2013). Social network analy-

sis with applications. John Wiley & Sons.

Neod [Computer software]. (2007). Retrieved
from http:/neodj.com/

Neodj-import- [Computer software]. (2015).
Retrieved from http//neodj.com/docs/stable/
import-tool.html

Numpy [Computer software]. (2006). Retrieved
from http:/www.numpy.org/

OpenRefine [Computer software]. (2011).
Retrieved from http://openrefine.org/
documentation.html

Pandas [Computer software]. (2008). Retrieved
from http:/pandas.pydata.org/

Rahm, Erhard, and Do, Hong Hai. (2000). ‘Data
cleaning: Problems and current approaches’,
IEEE Data Eng. Bull. 23.4: 3-13.

Rainie, Lee and Wellman, Barry. (2012). Net-
worked: The new social operating system.
Cambridge, MA: MIT Press.

(2013).

Robinson, lan, Webber, Jim and Eifrem, Emil.
(2015). Graph Databases: New Opportuni-
ties for Connected Data. Sebastopol, CA:
O'Reilly Media, Inc.

Ronen, Shahar, Gongalves, Bruno, Hu, Kevin Z.,
Vespignani, Alessandro, Pinker, Steven, and
Hidalgo, César A. (2014). ‘Links that speak:
The global language network and its associa-
tion with global fame’, Proceedings of the
National Academy of Sciences, 111(52):
ES5616-E5622.

Rubin, Donald B. (2004). Multiple imputation
for nonresponse in surveys (Vol. 81). John
Wiley & Sons.

Schafer, Joseph L. (1999). ‘Multiple imputation:
a primer'. Statistical Methods in Medical
Research, 8(1): 3-15.

Schafer, Joseph L. and Graham, John W.
(2002). ‘Missing data: our view of the state
of the art’, Psychological Methods, 7(2): 147.

Sloan, Luke and Morgan, Jeffrey. (2015). "Who
Tweets with Their Location? Understanding
the relationship between demographic char-
acteristics and the use of geoservices and
geotagging on Twitter’. PloS one, 10(11),
p.e0142209.

Titan Distributed Graph Database [Computer
software]. (2015). Retrieved from http:/
thinkaurelius.github.io/titan/

Twitter Streaming APIs. (2010). Retrieved from
https://dev.twitter.com/streaming/overview

